Christ Church C of E Primary School, Moreton.

Calculations Policy

Together we can do all things through Christ who strengthens us.

Date Written: July 2023

Date for Review: July 2024

School Vision

Contributions from parents, pupils, staff and school Governors have determined the priorities for our school vision. A consistent school vision shared by all based on the following:

"Love must be completely sincere. Hate what is evil, hold on to what is good. Love one another warmly as Christians, and be eager to show respect for one another. Work hard and do not be lazy. Serve the Lord with a heart full of devotion. Let your hope keep you joyful, be patient in your troubles, and pray at all times." Romans 12:9-1.

Rationale

At Christ Church CE Primary school we believe that Maths provides significant opportunities for the children to develop spirituality, morally, socially and culturally. The study of Maths involves giving opportunities in all areas of maths to develop their spirituality of self. This can be done through spotting things that help us make progress, looking at ways to apply problem solving and drive to solve problems. These approaches help develop the children's resilience and grow their ability to persevere, giving them a huge sense of achievement. Maths can also help develop them socially, when they are given open ended questions, work in a group or partner situation and work with peers and buddies to help them succeed. This creates a culture that is safe and supportive and enables them to develop their growth mind-set. In addition, our mathematics policy allows the children to develop their awe and wonder of the world and understanding of creation, through a deeper understanding of nature and looking at patterns of symmetry, visual representations of mathematics within the world and real life examples of fundraising and other initiatives linked to our school community.

Calculations policy

This policy is intended to demonstrate how we teach different forms of calculation and the progression within calculation at Christ Church. This policy is designed to help teachers and staff members at the school ensure that calculation is taught consistently across the school and to aid them in helping children who may need extra support or challenges. It is organised by objectives and then gives examples of how to use the Concrete, Pictorial and Abstract approach to teach these methods. Maths No Problem is used in Years 1-5 to enable children to learn in this way and Year 6 consolidates this using White Rose and other selected materials. For each year group's methods below, there are references to how Maths No Problem presents the method. These are some examples; there are more throughout the Maths No Problem resources. By the end of year 6, children are expected to use written formal methods for all four operations (addition, subtraction, multiplication and division) in readiness for secondary school.

Objectives by year group

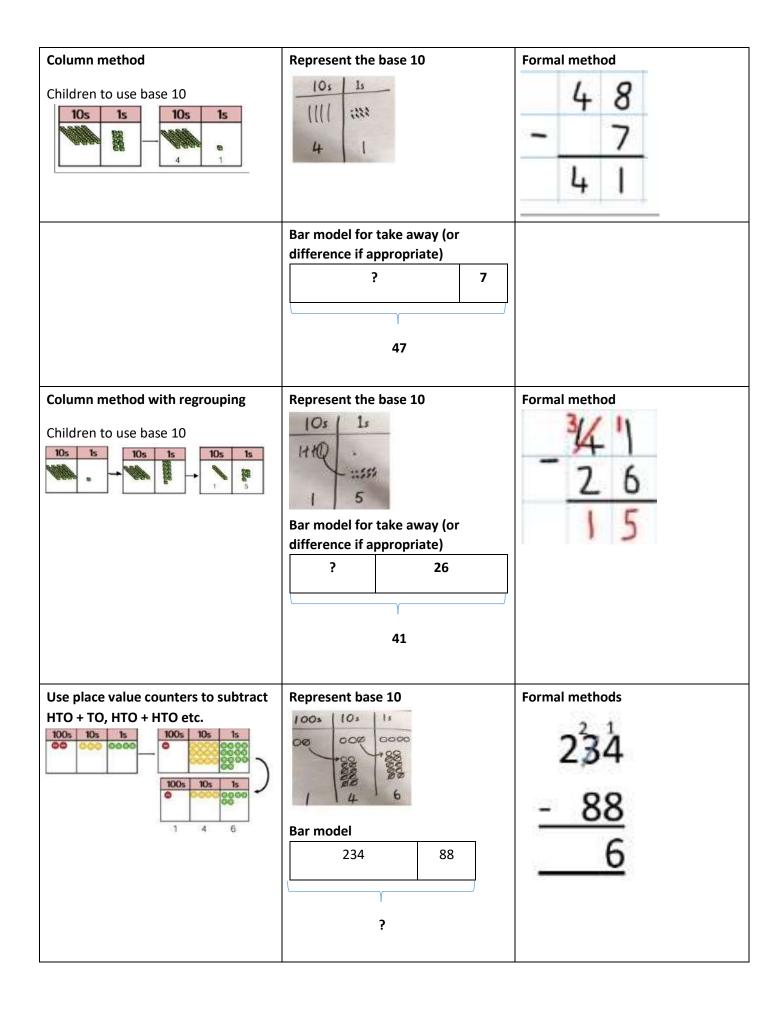
	EYFS/Year 1	<u>Year 2</u>	<u>Year 3</u>	<u>Year 4</u>	<u>Year 5</u>	<u>Year 6</u>
Addition	Combining two parts to make a whole (Part whole model) within 20 MNP Book 1A, Chapter 3 Addition within 10, lesson 1. Starting at the bigger number and counting on within 20 MNP Book 1A, Chapter 3 Addition within 10, lesson 2. Regrouping to make 10 MNP Book 1A, Chapter 7 Addition and subtraction within 20, lesson 2.	Add 3 single digit numbers MNP Book 2A, Chapter 2 Addition and Subtraction, lesson 13 Combine 2 numbers (two 2 digit numbers within 100) using base 10 MNP Book 2A, Chapter 2 Addition and Subtraction, lesson 4 Column method introducing regrouping.renaming. MNP Book 2A, Chapter 2 Addition and Subtraction, lesson 5	Use place value columns to add ones, tens and hundreds to 3 digit numbers MNP Book 3A, Chapter 2 Addition and Subtraction, lesson 7 Column method with regrouping MNP Book 3A, Chapter 2 Addition and Subtraction, lesson 8.	Column method with regrouping (up to 4 digits) MNP Book 4A, Chapter 2 Addition and Subtraction, lesson 5	Column method with regrouping (including decimals) MNP Book 5B, Chapter 7 Decimals, lesson 11	Column method with regrouping (including decimals)
<u>Subtraction</u>	Take away ones MNP Book 1A, Chapter 4 Subtraction within 10, lesson 4. Counting back MNP Book 1A, Chapter 4 Subtraction within 10, lesson 3.	Counting back MNP Book 2A, Chapter 2 Addition and Subtraction, lesson 7 Column method with regrouping MNP Book 2A, Chapter 2 Addition and Subtraction, lesson 11.	Use place value columns to subtract ones, tens and hundreds to 3 digit numbers MNP Book 3A, Chapter 2 Addition and	Column method with regrouping (up to 4 digits) MNP Book 4A, Chapter 2 Addition and Subtraction, lesson 11	Column method with regrouping (including decimals) MNP Book 5B, Chapter 7 Decimals, lesson 11	Column method with regrouping (including decimals)
	Find the difference Part whole model MNP Book 1A, Chapter 4 Subtraction within 10, lesson 2. Make 10 MNP Book 1A, Chapter 7 Addition and Subtraction within 20, lesson 6.		Subtraction, lesson 13 Column method with regrouping MNP Book 3A, Chapter 2 Addition and Subtraction, lesson 16.			

Multiplication	Recognising and making equal groups MNP Book 1B, Chapter 12 Multiplication, lesson 1. Doubling MNP Book 1B, Chapter 12 Multiplication, lesson 4. Counting in multiples MNP Book 1B, Chapter 12 Multiplication, lesson 2.	Repeated addition MNP Book 2A, Chapter 3 Multiplication and Division, lesson 3 Use arrays MNP Book 2A, Chapter 3 Multiplication and Division, lesson 7	Arrays MNP Book 3A, Chapter 3 Multiplication and Division, lesson 4 2 digit by 1 digit MNP Book 3A, Chapter 4 Further Multiplication and Division, lesson 2	Multiplication by partitioning MNP Book 4A, Chapter 4 Further Multiplication, lesson 9 Column multiplication- 2 and 3 digit by 1 MNP Book 4A, Chapter 4 Further Multiplication, lesson 11	Column multiplication- up to 4 digit by 1 and 2 digit MNP Book 5A, Chapter 3 Multiplication and Division, lesson 15	Column multiplication
<u>Division</u>	Sharing objects MNP Book 1B, Chapter 13 Division, lesson 2. Division as grouping MNP Book 1B, Chapter 13 Division, lesson 1.	Repeated subtraction Division as grouping MNP Book 2A, Chapter 4 Multiplication and Division, lesson 1 Division with arrays (link to multiplication)	Repeated subtraction to divide with a remainder - 2 digit by 1 digit	Short division (with remainder) - up to 3 digit by 1 digit MNP Book 4A, Chapter 4 Further Multiplication, lesson 16	Short division (with remainder) - up to 4 digit by 1 digit MNP Book 5A, Chapter 3 Multiplication and Division, lesson 19	Short division (exchanging into tenths and hundredths columns) Long division

Addition

Key vocabulary: total, parts and wholes, plus, add, altogether, more, 'is equal to', 'is the same as'

Concrete	<u>Pictorial</u>	<u>Abstract</u>
Combining two parts to make a whole	Represent the resources using dots/crosses on a part whole model	4+3=7
Using a range of resources: cubes, teddy bears, counters		


Counting on using a number line or cubes Children need to start from one number, rather than counting all	Bar model Children can count on from one number 4 1 1 ?	Represent the calculation on a blank number line 4 + 2 = 6 4 6
Regrouping to make 10 Using 10s frames, counters or cubes	Draw the 10s frame	Children to use 10 with missing number 6 + = 11
TO + O using base 10 Children need to understand partitioning and place value of 2 digit numbers	Represent base 10	Partition the TO 41 + 8 = 41 + 8 = 40 + 8 = 1 + 8 = 9 40 + 9 = 49
	Bar model 41 9 ?	

TO + TO using base 10	Represent base 10	Partitioning two-digit numbers
Children need to continue to develop understanding of partitioning and place value of 2 digit numbers. Children to regroup by exchanging 10 one blocks for a ten stick.	$\frac{10s}{11}$	$36 + 25 =$ $6 + 5 = 11$ $30 + 20 = 50$ $50 + 11 = 61$ Formal method 36 $+ \frac{25}{61}$ 1
Use place value counters to add HTO + TO, HTO + HTO etc. When there are 10 ones in the 1s column, we exchange or rename for 1 ten. Where there are 10 tens, we exchange or rename to 1 hundred etc. $\boxed{1005 105 15}_{6}_{6}_{6}_{1}_{1}_{1}_{1}_{1}_{1}_{1}}$	Represent base 10 100s 10s 1s 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 6 1 15 Bar model 243 368 ? ? ?	Formal methods 243 <u>+368</u> <u>611</u> 1 1

Subtraction

Key vocabulary: take away, less than, the difference, subtract, minus, fewer, decrease

Concrete	Pictorial	Abstract
Physically taking away and removing objects from the whole	Represent the resources	4 - 3 =
	ଷ୍ୟଷ୍ଠ	
Use a range of resources: tens frames,	Name of the second s	
cubes, teddy bears		
	Simple bar model	
Counting back	Dervesent the resources clangeide	Depresent the coloulation on a
Counting back	Represent the resources alongside a number line	Represent the calculation on a blank number line
Children to use number lines to count		
back	12345678910	HIM HIHHH
0000 000	12345010119	4 6
1 2 3 4 5 6 7 8 9 10		
Finding the difference	Bar Model	Difference
Using cubes or other objects to	8	The difference between 8 and 5 is
calculate the difference between two	5 ?	
different sets		Why does 9 and 6 have the same difference as 8 and 5?
?		
Making 10	Represent the tens frame	Partitioning to find 10
Using tens frames and counters		14 - 5 = 9
		4 1
		2007 77 1928/V
		14 - 4 = 10 10 - 1 = 9
		3049 90 202 (CDA) 544

Multiplication

Key vocabulary: double, times, multiplied by, the product of, groups of, lots of, equal groups

Key vocabulary: double, times, multiplied by, the product of, groups of, lots of, equal groups					
<u>Concrete</u>	<u>Pictorial</u>	<u>Abstract</u>			
Repeated addition	Represent each addition	Calculate			
There are 3 equal groups with 4 in each group	88 88 88	3 x 4 = 4 + 4 + 4 = 12			
3 x 4 = 4 + 4 + 4	Bar model ** ** ** ** ** **				
** ** **	?				
Number lines to show repeated groups	Represent the number line	Represent the calculation on a blank number line			
Use arrays to show commutativity $2 \times 5 = 5 \times 2$ $2 \log of 5$ $5 \log of 2$	Represent the arrays	Using arrays Children can apply their knowledge to write different calculations $10 = 2 \times 5$ $5 \times 2 = 10$ 2 + 2 + 2 + 2 + 2 = 10 10 = 5 + 5			
Partition to multiply Use a range of resources: base 10 or Numicon 4 x 15	Represent the resources	Partition 4 x 15 4 x 10 = 40			
	0 10 20 30 40 45 50 55 60 4 x 10 4 x 5 0 40 60	4 x 5 = 20			

Column method	Represent showing place value	Formal method (with steps)
Place value counters or base 10 can be used 10s 1s 000 000 000 000 0000 0000 0000 0000 0000 0000 0000	10s 1s 00 000 00 000 00 000 6 9	3×23 20 3 $3 \times 3 = 9$ 23 $3 \times 20 = 60$ $\times 3$ <u>69</u>
Formal column method (with	Represent to show regrouping	Formal written method
regrouping)	100s 10s 1s	23
100s 10s 1s 000 000 000 000 000 000 000 0	Q 0000	$\frac{\times 6}{138}$
When children start to multiply HT0 x be confident with abstract methods.	HTO and ThHTO x TO etc. they should	124
The children will need to be able to:		7 4 4
6 x 124 = 744		3 2 2 4
20 x 124 = 2480		Answer: 3224

Division

Key vocabulary: share, group, divide, divided by, half

<u>Key vocabulary:</u> share, group, d	Pictorial	Abstract
Sharing 6 shared by 2	Represent sharing Bar model *** ***	Calculate 3 3 Recall I know 2 x 3 = 6 so 6 ÷ 2 = 3
Repeated subtraction -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2	Represent taking away	Represent the calculation on a blank number line 72 - 72 - 72 - 72 - 72 - 72 - 72 - 72 -
TO ÷ O (with remainders) Share a range of resources: cubes etc.	Represent the groups	Recall I know 3 groups of 4 is 12 so there would be 1 left over.
Sharing using place value $\begin{array}{c} \bullet \bullet$	Represent the place value ØØØØ \$2000 10s 1s 0 0000 0 0000 0 0000 0 0000	Partition 42 = 30 + 12 30 ÷ 3 = 10 12 ÷ 3 = 4 So 42 ÷ 3 = 14

	Ι	Τ
Short division with counters	Represent each step	Short division
Make 615	100s 1 10s 1s	123
How many groups of 5 hundreds can	60 000	
you make with 6 hundred counters? 1		2.012
Exchange 1 hundred for 10 tens	1 7 3	
How many groups of 5 tens can you	1	
make with 11 ten counters? 2		
Exchange 1 ten for 10 ones		
How many groups of 5 ones can you		
make with 15 ones? 3		
100s 10s 1s		
00000		
00000 00000		
6 0 00000 00000		
1 2 3		
Long division with place value columns	We can't group 2 thousands into	Long division
2544 + 12	groups of 12 so we can exchange	
	them	0212
1000s 100s 10s 1s	Ma son succes 24 housed a list	10 000 10
	We can group 24 hundreds into groups of 12 (two groups), which	12 2544
	leaves 1 hundred	24
1000s 100s 10s 1s		_24
6666	After exchanging the hundred, we	dor 14
8888	have 14 tens. We can group 12 tens	Ider. 14
8000	into a group of 12, which leaves 2 tens	_12_
	tens .	24
1000s 100s 10s 1s	After exchanging the 2 tens, we have	24
	24 ones. We can group 24 ones into 2	
	groups of 12 with no remainder.	
8888		
1000s 100s 10s 1s		
3335 3855 8888		
8888 0000 0000 00000 00000 00000 00000 00000		
3333		